45 research outputs found

    Investigating Freeway Speed-Flow Relationships for Traffic Assignment Applications

    Get PDF
    Developments in high resolution traffic sensors over the past decades are providing a wealth of empirical speed-flow data. Travel demand models use speed-flow relationships to assign traffic flows to network links. However, speed-flow relationships have not been revalidated against new detailed traffic sensor data. Therefore, it is necessary to revisit speed-flow relationships based on actual measured conditions on network links rather than assuming constant speed-flow relationships over entire highway network systems. Speed-flow relationships have been particularly difficult to calibrate and estimate when traffic volumes approach capacity, i.e. when the v/c ratio approaches one. This thesis empirically evaluates the speed-flow relationships for v/c \u3c 1 using field data. For congested conditions (v/c \u3e 1) a theoretical approach is taken. A new methodology to determine the distribution of the activation of bottlenecks, bottleneck duration, and bottleneck deactivation is proposed. This thesis is a new contribution to understand the stochastic nature of freeway capacity as well as bottleneck duration, activation, and deactivation. Unlike previous research efforts, this thesis studies speed-flow relationships at the lane level and later presents a method to estimate speed-flow relationships at the link level

    Urban Network Gridlock: Theory, Characteristics, and Dynamics

    Get PDF
    AbstractThis study explores the limiting properties of network-wide traffic flow relations under heavily congested conditions in a large-scale complex urban street network; these limiting conditions are emulated in the context of dynamic traffic assignment (DTA) experiments on an actual large network. The primary objectives are to characterize gridlock and understand its dynamics. This study addresses a gap in the literature with regard to the existence of exit flow and recovery period. The one- dimensional theoretical Network Fundamental Diagram (NFD) only represents steady-state behavior and holds only when the inputs change slowly in time and traffic is distributed homogenously in space. Also, it does not describe the hysteretic behavior of the network traffic when a gridlock forms or when network recovers. Thus, a model is proposed to reproduce hysteresis and gridlock when homogeneity and steady-state conditions do not hold. It is conjectured that the network average flow can be approximated as a non-linear function of network average density and variation in link densities. The proposed model is calibrated for the Chicago Central Business District (CBD) network. We also show that complex urban networks with multiple route choices, similar to the idealized network tested previously in the literature, tend to jam at a range of densities that are smaller than the theoretical average network jam density. Also it is demonstrated that networks tend to gridlock in many different ways with different configurations. This study examines how mobility of urban street networks could be improved by managing vehicle accumulation and re-distributing network traffic via strategies such as demand management and disseminating real-time traveler information (adaptive driving). This study thus defines and explores some key characteristics and dynamics of urban street network gridlocks including gridlock formation, propagation, recovery, size, etc

    Traffic Assignment Problem for Pedestrian Networks

    Full text link
    The estimation of pedestrian traffic in urban areas is often performed with computationally intensive microscopic models that usually suffer from scalability issues in large-scale walking networks. In this study, we present a new macroscopic user equilibrium traffic assignment problem (UE-pTAP) framework for pedestrian networks while taking into account fundamental microscopic properties such as self-organization in bidirectional streams and stochastic walking travel times. We propose four different types of pedestrian volume-delay functions (pVDFs), calibrate them with empirical data, and discuss their implications on the existence and uniqueness of the assignment solution. We demonstrate the applicability of the developed UE-pTAP framework in a small network as well as a larger scale network of Sydney footpaths

    Multimodal urban mobility and multilayer transport networks

    Get PDF
    Transportation networks, from bicycle paths to buses and railways, are the backbone of urban mobility. In large metropolitan areas, the integration of different transport modes has become crucial to guarantee the fast and sustainable flow of people. Using a network science approach, multimodal transport systems can be described as multilayer networks, where the networks associated to different transport modes are not considered in isolation, but as a set of interconnected layers. Despite the importance of multimodality in modern cities, a unified view of the topic is currently missing. Here, we provide a comprehensive overview of the emerging research areas of multilayer transport networks and multimodal urban mobility, focusing on contributions from the interdisciplinary fields of complex systems, urban data science, and science of cities. First, we present an introduction to the mathematical framework of multilayer networks. We apply it to survey models of multimodal infrastructures, as well as measures used for quantifying multimodality, and related empirical findings. We review modelling approaches and observational evidence in multimodal mobility and public transport system dynamics, focusing on integrated real-world mobility patterns, where individuals navigate urban systems using different transport modes. We then provide a survey of freely available datasets on multimodal infrastructure and mobility, and a list of open source tools for their analyses. Finally, we conclude with an outlook on open research questions and promising directions for future research.Comment: 31 pages, 4 figure

    Calibration of traffic flow models under adverse weather and application in mesoscopic network simulation

    Get PDF
    The weather-sensitive traffic estimation and prediction system (TrEPS) aims for accurate estimation and prediction of the traffic states under inclement weather conditions. Successful application of weather-sensitive TrEPS requires detailed calibration of weather effects on the traffic flow model. In this study, systematic procedures for the entire calibration process were developed, from data collection through model parameter estimation to model validation. After the development of the procedures, a dual-regime modified Greenshields model and weather adjustment factors were calibrated for four metropolitan areas across the United States (Irvine, California; Chicago, Illinois; Salt Lake City, Utah; and Baltimore, Maryland) by using freeway loop detector traffic data and weather data from automated surface-observing systems stations. Observations showed that visibility and precipitation (rain-snow) intensity have significant impacts on the value of some parameters of the traffic flow models, such as free-flow speed and maximum flow rate, while these impacts can be included in weather adjustment factors. The calibrated models were used as input in a weather-integrated simulation system for dynamic traffic assignment. The results show that the calibrated models are capable of capturing the weather effects on traffic flow more realistically than TrEPS without weather integration
    corecore